System reliabiliy estimation using conditional Monte Carlo simulation

Arne Bang Huseby
Department of Mathematics
University of Oslo
Norway
arne(@math.uio.no

Abstract

The paper considers the problem of estimating system reliability using Monte Carlo simulation. By con-
ditioning on suitable functions of the component state vector, the Monte Carlo estimate may converge
much faster to the true reliability. In the paper we demonstrate how this can be done using a combination of
upper and lower bounds and component counts. The method is especially well suited for estimating
reliability of network systems. For such systems the method can be optimized using the well-known domi-
nation invariant. After presenting the main ideas, a few illustrating examples are included as well as com-
parison with other similar methods.

1. Introduction

The problem of computing the reliability of a complex multicomponent system has been studied exten-
sively over many years. Finding exact analytical solutions is often very difficult. In general this problem
is known to be NP-hard. An attractive alternative to an analytical approach is to use Monte Carlo simula-
tions. Since, however, failure events often have very low probability, a large number of simulations is
needed in order to obtain stable results. Still by conditioning on suitable functions of the component state
vector the convergence can be accelerated. Variations of this idea has been explored by several authors.
There are two main approaches to this: (i) conditioning on upper and lower bounds of the structure
function, and (ii) conditioning on component counts. The first approach is studied in Fishman (1986a) and
Fishman (1986b). See also the more recent papers by Cancela and El Khadari (1995), Cancela and El
Khadari (1998) and Cancela and El Khadari (2003) where a recursive procedure is used, and Ross (1994).
The second approach is used in Huseby and Naustdal (2003). For a more thorough discussion and a
comparison of the two approaches we refer to Huseby et.al. (2004).

In the present paper we combine the two approaches. That is, we condition both on upper and lower
bounds and on component counts. This way we are able to improve both approaches. Before we explain
the ideas further, we introduce the following standard assumptions and notation. Let X = (X, ... , X)) be a
vector of n independent bernoulli variables, interpreted as the component state vector relative to a system
of n components. A component is failed if its state variable is 0, and functioning if the state variable is 1.
We also introduce the structure function of the system, ¢, which is also assumed to be bernoulli, and
interpreted as the system state. If ¢ is 0, the system is failed, whereas if ¢ is 1, the system is functioning.
The function ¢ is assumed to be a nondecreasing function of the component state vector, X. The expected
value of ¢, denoted 4, is called the system reliability, and is equal to Pr(¢ = 1). The goal of the analysis is
to obtain an estimate for 4 based on a Monte Carlo simulation of the system.

The upper and lower bound approach is based on finding two simpler structure functions, ¢, and ¢y, such
that ¢, < ¢ < dr. We can then write:
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(11) h = E[(i)] = 91’1 Pr(d)L = 1, (I)U: 1) + 60,1 Pr((I)L = 0, ¢U: 1) + 90’0 Pr(d)L = O, (I)U: 0)

= hy + 0o, (hy - hy),

where 0;; = E[0|0, = i, v =j], h, = E[¢,] and hy = E[¢y]. Assuming that s, and /y can be calculated ana-
lytically in polynomial time, we only need to estimate 6, ;. This is done by sampling from the conditional
distribution of X given ¢, = 0 and ¢y = 1. If ¢, and ¢y are close approximations to ¢, a lot can be gained
by using this procedure. Several different methods for constructing upper and lower bound functions are
studied in Huseby et.al. (2004) including the one given in Fishman (1986a). An efficient algorithm for
sampling from the conditional distribution is also provided.

The component count approach is based on selecting a subset 4 of the component set, C, and conditioning
on the number of functioning components within 4. Thus, we introduce the following quantities:

(12)  8,=> X, and 0, = E[§IS,=5],5=0,1,...., |A].
icAd
We can then write:
|4

(1.3)  h=E[p]=>0,Pr(S, =5)

The distribution of S, can easily be calculated in O(]4|)-time. Thus, in order to estimate / using this setup,
we just need to estimate 0y, 0y, ... , 6,4. This is done by sampling from the conditional distributions of X
given Sy. In Huseby and Naustdal (2003) this is done for the case when A is the entire set of components.
A special algorithm is derived for the case when all the components have equal reliability. Extending all
the sampling procedures to cases where 4 is a subset is trivial.

In general there is no uniformly best among the two above approaches. For some systems the upper and
lower bound approach yields the best results while for other systems it is better to condition on com-
ponent counts. For the special case where all components have equal reliabilities, though, the second
approach has a clear advantage. In this particulary case both the conditional distributions of X given S, as
well as the conditional expectations, 0y, 01, ..., 04, do not depend on the common component reliability.
Thus, denoting the common component reliability by p, the entire reliability polynomial, 4(p), can be esti-
mated simultaneously for all p using common estimates for the 6,’s.

2. A combined approach

In order to combine the two approaches discussed in the previous section, we construct the upper and
lower bounds using what is called the factoring method. That is, we choose a subset 4 of the component
set, C, and define ¢, and ¢y as follows:

Q1) XM =90",X), and  $u(X) = (1", X),
where X denotes the subvector of X corresponding to the set C\4, while (0, X) and (1%, X) denotes the
vectors obtained from X by replacing all entries corresponding to the set 4 by 0 or 1 respectively. As a
result we obviously get that ¢, < ¢ < . We assume that the set 4 is chosen so that the reliabilities of ¢,
and ¢ can be calculated in polynomial time. This would be the case if e.g., both these structures are s-p-
structures, i.e., structures which can be reduced to single components by applying series and parallel
reductions. It is easy to see that 4 can always be chosen so that this is the case.



As in the previous section we let S, denote the component count corresponding to the set 4, i.e., the sum
of X;’s for all i € A. In this case, however, we introduce the following conditional expectations:

22) O,=E[0ISi=s5,¢.=0,¢y=1],5=0,1, ..., 4]

Since the X;’s are assumed to be independent, it follows that S, is independent of ¢, and ¢,. As a result
we get that:
|4

23)  h=E[p]=h,+>0,(n, —h,)Pr(s, =5)

Thus, an estimate of / can be obtained by estimating 0, 0y, ... , 0,4. This is done by sampling from the
conditional distribution of X given S,, ¢; and ¢y. Using the independence of the X;’s again it follows that
X* is independent of ¢, and ¢y, while X““ is independent of S,. Hence, X* can be sampled from the
conditional distribution of X* given S, using the procedure derived for the component count approach.
Similarly X can be sampled from the conditional distribution of X given ¢, and ¢, using the
procedure derived for the upper and lower bound approach.

It is easy to see that the combined approach improves both the previous approaches. It should be noted,
however, that the efficiency of this method depends on the choice of the set 4. Intuitively, one should try
to minimize the size of the set as much as possible. Moreover, one should choose 4 so that the upper and
lower bounds are close and provide as much information about the subvector X as possible. These
considerations can be studied using the theory of domination. See Huseby et. al. (2004) for more details.

For the special case when all components have equal reliabilities we can sample X* using the special
algorithm developed for the component count approach. See Huseby and Naustdal (2003) for more
details. However, it should be noted that in this case the conditional expectations, 6, 0, ... , 64, will
depend on the common component reliability. Thus, we cannot use common estimates for the 6,’s to com-
pute the entire reliability polynomial, 4(p) as we could with the component count approach.

3. Applying the improved sampling method on a network system

In this section we illustrate the combined approach on a specific example: a 2-terminal undirected net-
work system consisting of 49 nodes organized in a 7x7 grid and connected horizontally and vertically by
84 edges (42 horizontal edges and 42 vertical edges). The terminals are located in the first and the last
column of the the fourth row of nodes. The nodes are assumed to function perfectly, while the edges have
a common reliability p. As the set 4, we select all vertical edges, except those in the first and last column.
Thus, |4] = 30. The reliability polynomial, 4(p), is estimated for p = 0.00, 0.01, ..., 0.99, 1.00. For all the
edges outside the set 4 the states are generated using common random numbers for all values of p.

As a comparison we also estimate the reliability polynomial using crude Monte Carlo simulations, again
using common random numbers for all values of p. In Figure 1 the resulting simulation results are shown.
Both plots contain four curves each representing 500 iterations. As is seen, the combined method pro-
duces four almost identical curves indicating a very good convergence. The crude Monte Carlo method,
on the other hand, produces far less stable results. We have also compared the combined method to results
using either upper and lower bounds or component counts. We did not have room for he results of these
simulations in this brief paper, but both these methods were outperformed by the combined approach.
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Figure 1: Reliability polynomials for a 2-terminal undirected network system estimated using crude
Monte Carlo (left) and combined conditional Monte Carlo (right).

4. Conclusions

By conditioning on upper and lower bounds and component counts in Monte Carlo simulations, we are
able to obtain improved results compared to conditioning either on bounds or on counts. The method
produces stable estimates for large scale systems even for small or moderate sample sizes.
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